Appendix

List of Key Research Topics in Ecology

(Based on the discussion session for the invited speakers at the 3rd ISOME in Beijing Normal University, June 6, 2005)

1. Molecular and evolutionary ecology
 1) Genetic consequences of climatic and environmental changes
 2) Ecological adaptation and speciation – the effect of ecological factors on genotype and phenotype
 3) Ecological genomics
 4) Phylogeography – use DNA markers to study processes and patterns of geographical variation
 5) Relationship of genetic diversity to species diversity and community stability
 6) Life history evolution – functional groups, life-history trade-offs, implications to species coexistence, sex allocation
 7) Phenotypic plasticity

2. Ecophysiology
 8) Physiological adaptation and responses to extreme environments / in stressed environments
 9) Physiological responses and adaptation to global change
 10) Scaling of ecophysiological processes (including allometric scaling)
 11) Resource allocation, plant defense, and reproductive strategies (closely related to chemical ecology)

3. Population Ecology
 12) Population dynamics in heterogeneous environments (including metapopulation dynamics and metapopulation genetics)
 13) Role of dispersal in population dynamics and distribution
 14) Causes and mechanisms of population regulation
 15) Survival of small populations (demographic, genetic, and environmental stochasticities, as well as disasters)
 16) Population ecology of clonal organisms
 17) Interface between population and ecosystem ecology
4. Community Ecology
 18) Maintenance mechanisms of species diversity
 19) Neutral theory and species-area relationship
 20) Food web structure and trophic interactions
 21) Community phenological responses to environmental changes (in relation to global change, urbanization, etc.)
 22) Community organization and dynamics
 23) Species interactions
 24) Relationship between local and regional patterns/processes

5. Ecosystem Ecology
 25) Biodiversity and ecosystem functioning
 26) Ecosystem responses and feedbacks to global changes (e.g., climate change and land use change; emphasizing multiple stressors/factors)
 27) Ecosystem responses to local and regional-scale disturbances (including natural and anthropogenic disturbances, such as fires, grazing, nutrient enrichment, pest outbreaks, flooding, hydrological alterations)
 28) Ecological stoichiometry and elemental interactions

6. Landscape Ecology
 29) Relationship between spatial pattern and ecological processes (particularly population and ecosystem processes)
 30) Land use and land cover change and its ecological consequences (including urbanization, urban/wilderness interface, etc.)
 31) Disturbance and patch dynamics
 32) Landscape fragmentation and its effects on biodiversity and ecosystem functioning
 33) Scaling – transferring information across space, time, and organizational levels
 34) Ecosystem/landscape management
 35) Integration between ecology and landscape planning, design, and architecture
 36) Transdisciplinary studies of landscape sustainability

7. Global Change and Ecological Responses
 37) Global C, N, and hydrological cycles
 38) Human dimensions in global change (land use and land cover, decision/policy making, socioeconomic processes, human-induced disturbances, etc.)
 39) Field manipulative ecosystem experiments (soil warming, FACE, etc.)
 40) Multiple-scale monitoring/observing systems
 41) Thresholds, nonlinearity, and uncertainty in global change research

8. Biological Invasions
 42) Invasion mechanisms, processes, and prediction
 43) Methods, management, and policy for controlling and eradicating biological invasion
 44) Transcontinental exchange of species
 45) Impacts of biological invasion
9. Conservation Biology (Pattern, dynamics, mechanisms, and conservation of biodiversity)
 46) Spatial pattern, mechanisms, and conservation strategy of biodiversity
 47) Biodiversity and global change
 48) Impacts of major geological events on biodiversity
 49) Mechanisms and conservation strategies of threatened species
 50) Role of biodiversity in ecological restoration and rehabilitation
 51) Monitoring and information systems of biodiversity

10. Restoration ecology
 52) Assembly rules and restored ecosystem organization
 53) Spatial heterogeneity and restored ecosystem development
 54) Environmental stochasticity and ecological restoration design and evaluation
 55) Thresholds and nonlinearity in ecosystem degradation and restoration
 56) Development and study of reference ecosystems (along a gradient of disturbance for a specific ecosystem type)
 57) Whole-ecosystem experimental studies of ecological restoration

11. Ecosystem Services and Valuation
 58) Processes and underlying mechanisms that generate ecosystem services
 59) Quantification and identification of ecosystem services
 60) Spatial variability and dynamics of ecosystem services
 61) Relationship of ecosystem services to human activities and welfare
 62) Valuation methodologies and approaches

13. Other topics of special concern
 63) Methodology, field design, and statistical analysis of large-scale ecological experiments (some methodologies do exist, but their applications have rarely used or misused)
 64) Database networking and sharing
 65) Long-term ecological monitoring and research
 66) Outbreaks of epidemic and infectious species
 67) Impacts of grand engineering projects (hydroelectric dams, etc.) on biodiversity
 68) Ecological risk assessment
 69) Tree of life – Molecular phylogenetics